htw saar QR-encoded URL
Zurück zur Hauptseite Version des Moduls auswählen:
Lernziele hervorheben XML-Code


[Lernergebnisse des Moduls anzeigen]

Thermodynamik der Apparate und Maschinen

Modulbezeichnung:
Bezeichnung des Moduls innerhalb des Studiengangs. Sie soll eine präzise und verständliche Überschrift des Modulinhalts darstellen.
Thermodynamik der Apparate und Maschinen
Studiengang:
Studiengang mit Beginn der Gültigkeit der betreffenden ASPO-Anlage/Studienordnung des Studiengangs, in dem dieses Modul zum Studienprogramm gehört (=Start der ersten Erstsemester-Kohorte, die nach dieser Ordnung studiert).
Maschinenbau / Produktionstechnik, Bachelor, ASPO 01.10.2024
Code: DBMAB-310
SAP-Submodul-Nr.:
Die Prüfungsverwaltung mittels SAP-SLCM vergibt für jede Prüfungsart in einem Modul eine SAP-Submodul-Nr (= P-Nummer). Gleiche Module in unterschiedlichen Studiengängen haben bei gleicher Prüfungsart die gleiche SAP-Submodul-Nr..
P720-0029
SWS/Lehrform:
Die Anzahl der Semesterwochenstunden (SWS) wird als Zusammensetzung von Vorlesungsstunden (V), Übungsstunden (U), Praktikumsstunden (P) oder Projektarbeitsstunden (PA) angegeben. Beispielsweise besteht eine Veranstaltung der Form 2V+2U aus 2 Vorlesungsstunden und 2 Übungsstunden pro Woche.
40UV+20UU (60 Unterrichtseinheiten)
ECTS-Punkte:
Die Anzahl der Punkte nach ECTS (Leistungspunkte, Kreditpunkte), die dem Studierenden bei erfolgreicher Ableistung des Moduls gutgeschrieben werden. Die ECTS-Punkte entscheiden über die Gewichtung des Fachs bei der Berechnung der Durchschnittsnote im Abschlusszeugnis. Jedem ECTS-Punkt entsprechen 30 studentische Arbeitsstunden (Anwesenheit, Vor- und Nachbereitung, Prüfungsvorbereitung, ggfs. Zeit zur Bearbeitung eines Projekts), verteilt über die gesamte Zeit des Semesters (26 Wochen).
5
Studienjahr: 3
Pflichtfach: ja
Arbeitssprache:
Deutsch
Prüfungsart:
StO 2024: Klausur (120 min)
StO 2021: Klausur (90 min)


[letzte Änderung 13.02.2025]
Verwendbarkeit / Zuordnung zum Curriculum:
Alle Studienprogramme, die das Modul enthalten mit Jahresangabe der entsprechenden Studienordnung / ASPO-Anlage.

DBMAB-310 (P720-0029) Maschinenbau / Produktionstechnik, Bachelor, ASPO 01.10.2021 , 3. Studienjahr, Pflichtfach
DBMAB-310 (P720-0029) Maschinenbau / Produktionstechnik, Bachelor, ASPO 01.10.2024 , 3. Studienjahr, Pflichtfach
Arbeitsaufwand:
Der Arbeitsaufwand des Studierenden, der für das erfolgreiche Absolvieren eines Moduls notwendig ist, ergibt sich aus den ECTS-Punkten. Jeder ECTS-Punkt steht in der Regel für 30 Arbeitsstunden. Die Arbeitsstunden umfassen Präsenzzeit (in den Vorlesungswochen), Vor- und Nachbereitung der Vorlesung, ggfs. Abfassung einer Projektarbeit und die Vorbereitung auf die Prüfung.

Die ECTS beziehen sich auf die gesamte formale Semesterdauer (01.04.-30.09. im Sommersemester, 01.10.-31.03. im Wintersemester).
Die Präsenzzeit dieses Moduls umfasst 60 Unterrichtseinheiten (= 45 Zeitstunden). Der Gesamtaufwand des Moduls beträgt bei 5 Creditpoints 150 Stunden (30 Stunden/ECTS Punkt). Daher stehen für die Vor- und Nachbereitung der Veranstaltung zusammen mit der Prüfungsvorbereitung 105 Stunden zur Verfügung.
Empfohlene Voraussetzungen (Module):
DBMAB-160 Grundlagen der Thermodynamik


[letzte Änderung 13.02.2025]
Als Vorkenntnis empfohlen für Module:
DBMAB-320 Höhere Thermodynamik und Fluidmechanik


[letzte Änderung 13.02.2025]
Modulverantwortung:
Prof. Dr.-Ing. Jan Christoph Gaukler
Dozent/innen: Prof. Dr.-Ing. Jan Christoph Gaukler

[letzte Änderung 11.06.2021]
Lernziele:
Die Studierenden sind in der Lage, bisherige, aktuelle bzw. zukünftige Entwicklungen der Energietechnik im Rahmen der Energiewende zu benennen, einzuordnen und aus gesellschaftlicher und ökologischer Sicht zu bewerten, um z.B. den gesellschaftlichen Diskurs darüber kritisch und reflektiert zu begleiten und ggf. mitzugestalten.
 
Die Studierenden verfügen über erweiterte Grundlagen der Thermodynamik (Hauptsätze, Entropie, thermodynamische Hauptgleichungen, irreversible Prozesse, Wirkungsgrade, Exergie und Anergie sowie reale Einstoffsysteme). Sie verstehen thermodynamische Phänomene und Konzepte. Sie können Zustandsänderungen und reversible Kreisprozesse mit Dämpfen berechnen, Energiebilanzen idealer Prozesse aufstellen und Maschinen, die auf Basis eines Wärmekraftprozesses bzw. eines Kälte- bzw. Wärmepumpenprozesses arbeiten, beschreiben. Sie sind in der Lage, thermodynamische Fragestellungen und ingenieurwissenschaftliche Probleme mittlerer Komplexität unter Anwendung mathematischer Methoden selbstständig zu beantworten, indem sie z.B. thermodynamische Prozesse bewerten bzw. optimieren.

[letzte Änderung 13.02.2025]
Inhalt:
• Zweiter Hauptsatz der Thermodynamik – Vertiefung
  o Formulierungen und Folgesätze
  o Entropie: Definition, Hauptgleichungen der Thermodynamik, thermodynamische Beziehungen und ihre Anwendung
  o Entropiezunahme bei irreversiblen Prozessen: Strömung mit Reibung, Drosselung, Vermischung, Wärmeübertragung
  o Wirkungsgrade von Turbinen und Verdichtern
  o Exergie und Anergie: Exergie geschlossener Systeme, Exergie offener, stationärer Systeme, Exergieverlust,
    exergetischer Wirkungsgrad, Exergie-Anergie-Flussbilder
 
• Fortsetzung der Diskussion zu bisherigen, aktuellen und zukünftigen Entwicklungen der Energietechnik aus
  naturwissenschaftlich-technischer, gesellschaftlicher und ökologischer Sicht auf Grundlage vertieften Wissens
 
• Einstoffsysteme
  o Reale Gase: Realgasfaktor, Virialgleichung, Van-der-Waals-Gleichung, Prinzip der übereinstimmenden Zustände,
    kalorische Zustandsgleichungen
  o Grundbegriffe und Gibb’sche Phasenregel
  o Zustandsgrößen im Zweiphasengebiet
  o Clausius-Clayperon-Gleichung und Phasenübergänge
  o Phasendiagramme
  o Einfache Zustandsänderungen im Zweiphasengebiet
  o Kreisprozesse mit Dämpfen:
    o Dampfkraftprozesse (Carnot- u. Clausius-Rankine Prozess)
    o Gas-Dampf-Kombikraftwerk
    o Kaltdampfprozesse (Carnot-, Kälte- und Wärmepumpenprozess)
 

[letzte Änderung 13.02.2025]
Weitere Lehrmethoden und Medien:
Vorlesungen: Vortrag, Frage- und Impulsunterricht, Unterrichtsgespräch insb. zur ganzheitlichen Betrachtung einer Problemstellung aus naturwissenschaftlich-technischer, ethischer, gesellschaftlicher und ökologischer Sichtweise, Bearbeitung konkreter Problemstellungen in Gruppenarbeit
Übungen: Bearbeitung konkreter Problemstellungen in Gruppenarbeit

[letzte Änderung 13.02.2025]
Literatur:
• H.D. Baehr, St. Kabelac: Thermodynamik – Grundlagen und technische Anwendung (Springer)
• F. Bosnjakovic, K.F. Knoche: Technische Thermodynamik – Teil I (Springer)
• G. Cerbe, G. Wilhelms: Technische Thermodynamik – Theoretische Grundlagen und praktische
Anwendungen (Carl Hanser Verlag)
• D. Flottmann, D. Forst, H. Roßweg: Chemie für Ingenieure (Springer)
• J. Hoinkis, E. Lindner: Chemie für Ingenieure (Wiley-VCH)
• P. W. Atkins, J. de Paula: Physikalische Chemie (Wiley-VCH)

[letzte Änderung 06.09.2021]
[Fri Apr  4 00:20:56 CEST 2025, CKEY=atdaum, BKEY=aswmpt2, CID=DBMAB-310, LANGUAGE=de, DATE=04.04.2025]