htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
XML-Code

flag

Optical Communications Systems

Module name (EN):
Name of module in study programme. It should be precise and clear.
Optical Communications Systems
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Electrical Engineering, Bachelor, ASPO 01.10.2005
Module code: E517
SAP-Submodule-No.:
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
P211-0184
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
2V (2 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
2
Semester: 5
Mandatory course: yes
Language of instruction:
German
Assessment:
Written examination

[updated 12.03.2010]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

E517 (P211-0184) Electrical Engineering, Bachelor, ASPO 01.10.2005 , semester 5, mandatory course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
30 class hours (= 22.5 clock hours) over a 15-week period.
The total student study time is 60 hours (equivalent to 2 ECTS credits).
There are therefore 37.5 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
E304 Electrical Engineering Theory I


[updated 12.03.2010]
Recommended as prerequisite for:
E613 High-Frequency Engineering Lab Course


[updated 12.03.2010]
Module coordinator:
Prof. Dr. Martin Buchholz
Lecturer:
Prof. Dr. Martin Buchholz


[updated 12.03.2010]
Learning outcomes:
After successfully completing this course, students will have an understanding of the basic principles of signal transmission in fibre-optic cables and networks. They will be able to describe and explain an entire optical transmission path. Students will be acquainted with the latest technical specifications of optical components and systems. The course will enable students to critically compare and assess optical communications systems (enormous transmission capacities, rapid innovation) with other communications systems. The skills acquired can be used to compile specifications for optical transmission paths.

[updated 12.03.2010]
Module content:
1.Introduction
 
2.Basic optical principles
 
3.Light transmission in optical fibres
  Monomode and multimode optical waveguides
  Step index and graded-index optical fibres
 
4.Dispersion
 
5.Optical transmitters
  LEDs and high-intensity laser diodes
 
6.Modulation of optical radiation
  Direct and external modulators
 
7.Optical receivers
  PIN and avalanche photodiodes, diode noise
 
8.Optical amplifiers
  Erbium-doped fibre amplifiers (EDFA), Raman amplifiers, high-power laser  
  amplifiers
 
9.Optical networks and components
  SDH networks, wavelength multiplexers, CDWM, DWDM
 
10.Measuring and instrumentation methods used in optical communications systems
   OTDR, dispersion measurements, attenuation measurements

[updated 12.03.2010]
Teaching methods/Media:
Overhead transparencies, video projector

[updated 12.03.2010]
Recommended or required reading:
Schiffner, G.: Optische Nachrichtentechnik - Physikalische Grundlagen, Entwicklung, moderne Elemente und Systeme, Teubner Verlag, 2005
Brückner, V.: Optische Nachrichtentechnik - Grundlagen und Anwendungen, Teubner Verlag, 2003
Voges, E., Petermann, K.: Optische Kommunikationstechnik, Handbuch für Wissenschaft und Industrie, Springer, 2002
Krauss, O.: DWDM und optische Netze, Publicis Corporate Publishing, 2002
Unger, H.G.: Optische Nachrichtentechnik I – optische Wellenleiter, Hüthig Telekommunikation, 1993
Unger, H.G.: Optische Nachrichtentechnik II – Komponenten, Systeme, Messtechnik, Hüthig Telekommunikation, 1992
Grau, G.; Freude, W.: Optische Nachrichtentechnik – Eine Einführung, Springer, 1991

[updated 12.03.2010]
[Sun Nov 24 14:02:28 CET 2024, CKEY=eon, BKEY=e, CID=E517, LANGUAGE=en, DATE=24.11.2024]