|
|
|
| Module code: PIB-GKI |
|
|
2V+2S (4 hours per week) |
|
5 |
| Semester: 5 |
| Mandatory course: no |
Language of instruction:
German |
Assessment:
Written exam, Duration 90 min.
[updated 05.11.2025]
|
KIB-GKI (P221-0213) Computer Science and Communication Systems, Bachelor, ASPO 01.10.2022
, semester 5, optional course
PIB-GKI (P221-0213) Applied Informatics, Bachelor, ASPO 01.10.2022
, semester 5, optional course
PIB-GKI (P221-0213) Applied Informatics, Bachelor, SO 01.10.2026
, semester 5, optional course
|
60 class hours (= 45 clock hours) over a 15-week period. The total student study time is 150 hours (equivalent to 5 ECTS credits). There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
|
Recommended prerequisites (modules):
None.
|
Recommended as prerequisite for:
|
Module coordinator:
Prof. Dr. Christoph Tholen |
Lecturer: Prof. Dr. Christoph Tholen
[updated 25.09.2025]
|
Learning outcomes:
After successfully completing this module, students will be able to name and distinguish between different subfields of artificial intelligence. They will understand the most important principles and be able to independently implement simple tasks from various subfields. Students will be able to identify suitable artificial intelligence methods and procedures and apply them in simple application scenarios. They will work independently on simple AI systems in small teams. Students will discuss ethical issues associated with the use of AI in detail and take these into account when designing AI systems.
[updated 05.11.2025]
|
Module content:
Historical development of artificial intelligence Propositional logic First-order predicate logic Expert systems Fuzzy logic Uninformed and informed searches, heuristics Supervised and unsupervised machine learning
[updated 05.11.2025]
|
Teaching methods/Media:
Slides, programming exercises in PROLOG, Python, and KNIME
[updated 05.11.2025]
|
Recommended or required reading:
Ertel, W.: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung. Springer Fachmedien, Wiesbaden (2021). https://doi.org/10.1007/978-3-658-32075-1 Frochte, J.: Maschinelles Lernen: Grundlagen und Algorithmen in Python. Hanser, München (2019). https://doi.org/10.3139/9783446459977. Russell, S.J., Norvig, P.: Künstliche Intelligenz: ein moderner Ansatz. Pearson, München, Germany (2012). Karatas, M.: Eigene KI-Anwendungen programmieren. Rheinwerk Verlag, Bonn (2024). ISBN 978-3-8362-9763-9 Hopgood, A.A.: Intelligent Systems for Engineers and Scientists: A Practical Guide to Artificial Intelligence. CRC Press, Boca Raton (2021). https://doi.org/10.1201/9781003226277.
[updated 05.11.2025]
|