htw saar
Zurück zur Hauptseite

Version des Moduls auswählen:

Angewandte Informatik

Modulbezeichnung: Angewandte Informatik
Studiengang: Supply Chain Management, Master, ASPO 01.04.2016
Code: MASCM-140
SWS/Lehrform: 4VU (4 Semesterwochenstunden)
ECTS-Punkte: 6
Studiensemester: 1
Pflichtfach: ja
Arbeitssprache:
Deutsch
Prüfungsart:
Klausur und Projektarbeit (90 Minuten / Gewichtung 1:1 / Wiederholung semesterweise)
Zuordnung zum Curriculum:
MASCM-140 Supply Chain Management, Master, ASPO 01.04.2016, 1. Semester, Pflichtfach
Arbeitsaufwand:
Die Präsenzzeit dieses Moduls umfasst bei 15 Semesterwochen 60 Veranstaltungsstunden (= 45 Zeitstunden). Der Gesamtumfang des Moduls beträgt bei 6 Creditpoints 180 Stunden (30 Std/ECTS). Daher stehen für die Vor- und Nachbereitung der Veranstaltung zusammen mit der Prüfungsvorbereitung 135 Stunden zur Verfügung.
Empfohlene Voraussetzungen (Module):
Keine.
Sonstige Vorkenntnisse:
s. Zulassungsvoraussetzungen (mindestens 10 Creditpoints aus dem Bereich Informations- und Datenverarbeitung)

[letzte Änderung 06.01.2016]
Als Vorkenntnis empfohlen für Module:
MASCM-210 Supply Chain Planning
MASCM-230 Studienprojekt
MASCM-310 Master-Abschlussarbeit


[letzte Änderung 25.01.2016]
Modulverantwortung:
Prof. Dr. Stefan Selle
Dozent:
Prof. Dr. Christian Liebig
Prof. Dr. Stefan Selle
Dozenten des Studiengangs
Nico Krivograd, M.Sc.


[letzte Änderung 06.04.2017]
Lernziele:
Die Studierenden sollen durch die erfolgreiche Beendigung dieses Moduls in der Lage sein,
- Grundlegende Begriffe und Techniken der Informatik zu kennen,
- Zusammenhänge des Knowledge Management und Busineness Intelligence darzustellen,
- Methoden des Data Mining zu begreifen und anzuwenden,
- in selbstorganisierten Teams zu arbeiten,
- Arbeitsergebnisse zu verdichten und zu präsentieren,
- Projektergebnisse zu kritisieren.


[letzte Änderung 05.01.2016]
Inhalt:
[1] Grundlagen
- Informatik und Algorithmen
- Einführung in die Programmierung
- Tabellenkalkulation und Datenbanken
- Knowledge Management (KM)
 
[2] Business Intelligence (BI)
- Managementinformationssysteme und Reporting
- Datenmodellierung: Data Warehouse, Star-Schema, Snowflake-Schema
- Datenbereitstellung: Extract Transform Load(ETL)-Prozess
- Datenanalyse: Online Analytical Processing (OLAP)
 
[3] Data Mining (DM)
- Data Mining Prozesse
- ABC-Analyse, Scoring-Verfahren
- Clusteranalyse, Assoziationsanalyse, Entscheidungsbaum


[letzte Änderung 06.01.2016]
Lehrmethoden/Medien:
Vorlesung mit integrierten praktischen Übungen am PC mit Hilfe von MS Excel, Visual Basic for Applications (VBA), SAP BI 7 und Knime. Projektstudium in selbstorganisierten Teams.

[letzte Änderung 05.01.2016]
Literatur:
[1] Grundlagen
- Kilian, D., Krismer, R., Loreck, S., Sagmeister, A.: Wissensmanagement – Werkzeuge für Praktiker. 3. Auflage,
  Linde Verlag, Wien, 2007.
- Probst, G., Raub, S., Romhardt, K.: Wissen managen. Wie Unternehmen ihre wertvollste Ressource optimal nutzen.
  7 Auflage, Gabler Verlag, Wiesbaden, 2012.
 
[2] Business Intelligence
- Chamoni, P., Gluchowski, P.: Analytische Informationssysteme,  3. Auflage, Springer Verlag, Berlin, 2006.
- Marx Gómez, J. M., Rautenstrauch, C., Cissek, P.: Einführung in Business Intelligence mit SAP NetWeaver 7.0,
  Springer Verlag, Berlin, 2009.
- Müller, R., Lenz, H.-J.: Business Intelligence, Springer Vieweg Verlag, Berlin, 2013.
- Schmidt-Volkmar, P.: Betriebswirtschaftliche Analyse auf operationalen Daten, Gabler Verlag, Wiesbaden, 2008.
 
[3] Data Mining
- Kießwetter, M., Vahlkamp, D.: Data Mining in SAP NetWeaver BI, Galileo Press, Bonn, 2007.
- Runkler, T.A.: Data Mining, Vieweg+Teubner Verlag, Wiesbaden, 2010.
- Witten, I.H., Frank, E., Hall, M.A.: Data Mining, 3. Auflage, Morgan Kaufmann, Burlington, 2011.


[letzte Änderung 25.01.2016]
[Fri Sep 20 07:14:19 CEST 2019, CKEY=saia, BKEY=scm2, CID=MASCM-140, LANGUAGE=de, DATE=20.09.2019]