|
|
Module code: MASCM-141 |
|
4V (4 hours per week) |
6 |
Semester: 1 |
Mandatory course: yes |
Language of instruction:
German |
Assessment:
Written exam and project (90 minutes / Weighting 1:1 / Can be repeated semesterly)
[updated 13.09.2018]
|
MASCM-141 (P420-0336, P420-0337) Supply Chain Management, Master, ASPO 01.04.2017
, semester 1, mandatory course
|
60 class hours (= 45 clock hours) over a 15-week period. The total student study time is 180 hours (equivalent to 6 ECTS credits). There are therefore 135 hours available for class preparation and follow-up work and exam preparation.
|
Recommended prerequisites (modules):
None.
|
Recommended as prerequisite for:
|
Module coordinator:
Prof. Dr. Stefan Selle |
Lecturer: Prof. Dr. Stefan Selle
[updated 26.04.2017]
|
Learning outcomes:
After successfully completing this module, students will be able to: - define and explain basic terms from the field of data science, - illustrate interrelationships in the field of data science, - understand and apply data modeling methods, - apply and evaluate analytical methods of data mining, - work in self-organized teams, - consolidate and present work results, - criticize and reflect upon project results.
[updated 13.09.2018]
|
Module content:
Introduction - Decisions, data, Business Intelligence (BI), Big Data - Data protection, data security Data Analyses - ABC analysis - Cost-utility analysis (CUA) - Pivot analysis Data Management - Entity Relationship Modell (ERM) - ACID principle - Online Transaction Processing (OLTP) Data Warehouse - Dimensional modeling, star schema - Extract Transform Load (ETL) process - Online Analytical Processing (OLAP) Data Mining - Cross Industry Standard Process (CRISP) for Data Mining - Supervised learning, cross-validation, leave-one-out - Algorithms, heuristics Classification - Confusion matrix, Receiver Operating Curve (ROC) - Naive Bayes, decision trees, Artificial Neural Networks (ANN) Cluster Analyses - Hierarchical methods - k-means Association Rule Learning - Support, confidence, lift - Apriori algorithm Prognoses - Linear regression, time series analysis, smoothing - Stochastic processes, autoregressive processes Text Mining - Stemming, Bag-of-Words (BOW) model, Part-of-Speech (PoS) tagging - Frequency analysis, sentiment analysis, tag cloud Big Data - 5 Vs, NoSQL, In-Memory - Hadoop, MapReduce, Spark
[updated 13.09.2018]
|
Teaching methods/Media:
Lecture with practical exercises on the PC using MS Excel, MS Access, ARIS 9.8, SAP BW 7.4 and KNIME Analytics. Project work in self-organized teams.
[updated 13.09.2018]
|
Recommended or required reading:
Recommended reading: [Introduction] Müller, R.M.; Lenz, H.-J.: Business Intelligence, Springer Verlag, Berlin, 2013. [Data analyses] Wies, P.: Excel 2013 Fortgeschrittene Techniken, Herdt Verlag, Bodenheim, 2013. [Data management] Schicker, E.: Datenbanken und SQL, 4. Auflage, Springer Vieweg, Wiesbaden, 2014. Swoboda, B.; Buhlert, S.: Access 2013 Grundlagen für Datenbankentwickler, Herdt Verlag, Bodenheim, 2013. [Data warehouse] Bauer, A., Günzel, H.: Data-Warehouse-Systeme, 3. Aufl., Dpunkt-Verlag, Heidelberg, 2008. Inmon, W. H.: Building the Data Warehouse, John Wiley & Sons, New York, 1996. Kimball, R.: The Data Warehouse Toolkit, John Wiley & Sons, New York, 1996. [Data mining] Aggarwal, C.C.: Data Mining _ The Textbook, Springer Verlag, Cham, 2015. Ester, M., Sander, J.: Knowledge Discovery in Databases, Springer Verlag, Berlin, 2000. Han, J., Kamber, M., Pei, J.: Data Mining, 3. Aufl., Morgan Kaufmann, Waltham, 2012. Runkler, T.A.: Data Mining, Vieweg + Teubner, Wiesbaden, 2010. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining, Pearson, Boston, 2006. Witten, I.H., Eibe, F., Hall, M.A.: Data Mining, 3. Aufl., Morgan Kaufmann, Burlington, 2011. [Big data] Dorschel, J.: Praxishandbuch Big Data, Springer Gabler Fachmedien, Wiesbaden, 2015.
[updated 13.09.2018]
|