|
|
Module code: WIBb21-420 |
|
30VS (30 hours) |
5 |
Semester: 4 |
Mandatory course: yes |
Language of instruction:
German |
Assessment:
Exam
[updated 18.06.2025]
|
The total student study time for this course is 150 hours.
|
Recommended prerequisites (modules):
None.
|
Recommended as prerequisite for:
WIBb21-730 Systems Engineering/ X in the Loop (HiL, SiL, MiL)
[updated 30.05.2025]
|
Module coordinator:
Studienleitung |
Lecturer: Studienleitung
[updated 08.10.2021]
|
Learning outcomes:
After successfully completing this module, students will: • be able to prepare quantitative and qualitative data using descriptive statistical methods, and • interpret results • be able to recognize stochastic situations as such and analyze them using stochastic models • They will, in particular, be able to calculate probabilities, determine suitable distribution forms, and estimate distribution parameters • Students will be able to demonstrate a basic understanding of inductive statistics, in particular methods of parameter estimation and hypothesis testing • They will be able to select and carry out appropriate test procedures for empirical questions and interpret the results adequately.
[updated 18.06.2025]
|
Module content:
1. Descriptive statistics 1.1 Basic terms 1.2 One- and two-dimensional frequency distributions 1.3 Measures of location and measures of spread/dispersion 1.4 Calculating correlation and regression 1.5 Contingency calculation 2. Probability calculus 2.1 Basic terms: random experiment, events, probability 2.2 Modeling random experiments 2.3 Multi-stage random experiments 2.4 Conditional probability and independence 2.5 Random variables, expected value, variance 2.6 Calculation rules for expected values, variances, and covariances 2.7 Important distributions and limit theorems 3. Basic elements of inferential statistics 3.1 Problems with inferential statistics 3.2 Point and interval estimates 3.3 Hypothesis testing (parametric and non-parametric)
[updated 18.06.2025]
|
Teaching methods/Media:
Lecture, digitally supported teaching, self-study
[updated 18.06.2025]
|
Recommended or required reading:
Eckstein, Peter: Statistik für Wirtschaftswissenschaftler, 6. Auflage, Gabler, Wiesbaden, 2018 Eckstein, Peter: Klausurtraining Statistik, 4. Auflage, Gabler, Wiesbaden, 2005 Göllmann, Laurenz; Hübl, Reinhold; Pulham, Susan; Ritter, Stefan; Schon, Henning; Schüffler, Karlheinz; Voß, Ursula; Vossen, Georg: Mathematik für Ingenieure: Verstehen – Rechnen – Anwenden: Band 1: Vorkurs, Analysis in einer Variablen, Lineare Algebra, Statistik, Springer Vieweg Verlag, Wiesbaden, 2017 Pulham, Susan: Statistik leicht gemacht, Gabler, Wiesbaden, 2011 Sachs, Michael: Wahrscheinlichkeitsrechnung und Statistik für Ingenieurstudenten an Fachhochschulen; 5. Auflage, Carl Hanser Verlag, 2018
[updated 18.06.2025]
|