htw saar Piktogramm
Back to Main Page

Choose Module Version:
XML-Code

flag

Higher Analysis

Module name (EN): Higher Analysis
Degree programme: Mechatronics and Sensor Technology, Master, ASPO 01.10.2011
Module code: MST.HAN
Hours per semester week / Teaching method: 2V+1U+1F (4 hours per week)
ECTS credits: 5
Semester: according to optional course list
Mandatory course: no
Language of instruction:
German
Assessment:
Written exam/paper

[updated 01.10.2020]
Applicability / Curricular relevance:
MTM.HAN Mechatronics, Master, ASPO 01.04.2020, optional course, technical
MST.HAN Mechatronics and Sensor Technology, Master, ASPO 01.04.2016, optional course, technical
MST.HAN Mechatronics and Sensor Technology, Master, ASPO 01.10.2011, optional course, technical
Workload:
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
None.
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Barbara Grabowski
Lecturer: Prof. Dr. Barbara Grabowski

[updated 07.10.2014]
Learning outcomes:
After successfully completing this course, students will be able to investigate force and velocity fields and other fields of physics and electrical engineering using vector analysis methods.
In addition, they will be able to describe curves and curved surfaces in R2 and R3 parametrically using curvilinear coordinate systems and calculate properties such as lengths, curvatures, areas, volumes and centers of gravity, solve complex applied extreme value problems for functions in several variables with and without constraints, and handle eigenvalues, eigenvectors, and quadrics in practical applications.


[updated 01.10.2020]
Module content:
1.        Curves as vector-valued functions in a variable
1.1 Definition of vector functions and their geometrical meaning
1.2 Differentiation and integration of curves, Jordan curves
1.3 Tangent vectors and orientation of a curve
1.4 Case studies: Applications
2.        Real-value functions in several variables
2.1 Definition, surfaces of revolution and planes
2.2 The directional derivatives, partial derivatives and their properties
2.4 The gradient, tangent plane and total differential
2.5 Extreme value search methods with and without auxiliary conditions
2.6 Case studies: practical applications
3.        Coordinate transformation _ Curvilinear coordinates
3.1 The Jacobi matrix and its determinants
3.2 Coordinate lines and bases in curvilinear coordinate systems
3.3 Spherical, cylindrical and polar coordinates
3.4 Multiple integrals and integral transform
3.5. Case studies: practical applications
4.        Scalar and vector fields
4.1 Definitions
4.2 Gradient of a scalar field, rotation and divergence of vector fields and their meaning
4.3 Potential fields and potential function
4.4 Del and Laplace operator and useful equations - Maxwell´s equations
4.5  Line, surface and volume integrals over scalar and vector fields and their physical meaning
4.6. Theorems of Gauss and Stokes
4.7 Case studies: applications
5.        Eigenvalues and eigenvectors, quadrics
5.1 Scalar products and orthogonality
5.2. Orthogonal matrices, orthogonal bases, change between orthogonal bases
5.3. Eigenvalues and eigenvectors, eigenvalue estimation
5.4. EWe and EVe of symmetrical matrices, principal axis transformation (diagonalizability of a matrix)
5.5 Square shapes
5.6 Positive/negative (semi) definite matrices
5.7. Quadrics, normal form in R^2 and R^3
5.8 Case studies: practical applications


[updated 01.10.2020]
Teaching methods/Media:
Projector, smart notebook, lecture notes
PC lab: AMSeL

[updated 01.10.2020]
Recommended or required reading:
Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 1-3, Vieweg 2000.
MARSHDEN, TROMBA: Vektoranalysis, Spektrum, 1995.
Bourne, Kendall: Vektoranalysis, Teubner, 1966.
J.Stoer, R. Bulirsch "Einführung in die Numerische Mathematik I und II", Springer; Auflage: 5. Aufl. 2005 Springer; Auflage: 10., neu bearb. 2007.
D. Wille "Repetitorium der Linearen Algebra, Teil 1" Binomi 1997.
 
D. Wille, M. Holz "Repetitorium der Linearen Algebra, Teil 2"  Binomi Verlag; Auflage 2, 2006.
G.Merziger, T. Wirth "Repetitorium der höheren Mathematik" Binomi; Auflage 5, 2006.
B.Griese "Übungsbuch zur Linearen Algebra: Aufgaben und Lösungen" Vieweg+Teubner Verlag; Auflage 7, überarb. u. erw. Aufl. 2011.
K.Jänich "Lineare Algebra" Springer; 11. Aufl. 2008. 2., korr. Nachdruck 2013.
 


[updated 01.10.2020]
[Wed Dec  1 14:18:41 CET 2021, CKEY=yha, BKEY=ystm, CID=MST.HAN, LANGUAGE=en, DATE=01.12.2021]