htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
emphasize objectives XML-Code

flag

Simulating and Measuring Wind Turbines

Module name (EN):
Name of module in study programme. It should be precise and clear.
Simulating and Measuring Wind Turbines
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Energy system technology / Renewable energies, Bachelor, ASPO 01.10.2022
Module code: EE1534
SAP-Submodule-No.:
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
P212-0095, P212-0096
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
2V+2P (4 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
5
Semester: 5
Mandatory course: no
Language of instruction:
German
Assessment:
Project report

[updated 09.11.2022]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

EE1534 (P212-0095, P212-0096) Energy system technology / Renewable energies, Bachelor, ASPO 01.10.2022 , semester 5, optional course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
EE1101
EE1105 Renewable Energies
EE1201
EE1206
EE1307
EE1405


[updated 03.02.2023]
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Marc Deissenroth-Uhrig
Lecturer:
M.Eng. Mirco Hißler


[updated 03.02.2023]
Learning outcomes:
After successfully completing this module, students will:
•        understand the theoretical background of CFD
•        be able to use the Ansys software package
•        be able to perform simple simulations using the Ansys simulation software
•        be able to examine the simulation results critically
•        be able to write an informative project report to document the simulation results for the long term


[updated 09.11.2022]
Module content:
00.        Introduction to CFD
01.        Introduction to CFD
02.        Setting up the workbench / CFD crash course
03.        Theoretical principles of CFD
04.        Theoretical principles of wind turbines
05.        Creating geometry
06.        Networking
07.        Simulation setup
08.        Solution
09.        Post-processing
10.        Exercises and practical work


[updated 09.11.2022]
Recommended or required reading:
•        Ferziger, Joel H.; Perić, Milovan; Street, Robert L. (2020): Numerische Strömungsmechanik. 2., aktualisierte Auflage. Berlin, Heidelberg: Springer Vieweg
•        Lecheler, Stefan (2018): Numerische Strömungsberechnung. Wiesbaden: Springer Fachmedien Wiesbaden.
•        Martin, Helmut (2011): Numerische Strömungssimulation in der Hydrodynamik. Berlin, Heidelberg: Springer Berlin Heidelberg.
•        Schwarze, Rüdiger (2013): CFD-Modellierung. Berlin, Heidelberg: Springer Berlin Heidelberg.
•        Gasch, Robert; Twele, Jochen (2005): Windkraftanlagen. Grundlagen, Entwurf, Planung und Betrieb. 4. Aufl.: B.G. Teubner Verlag.
•        Hau, Erich (2016): Windkraftanlagen. Grundlagen, Technik, Einsatz, Wirtschaftlichkeit. 6. Auflage. Berlin: Springer Vieweg.
•        Quaschning, Volker (2013): Regenerative Energiesysteme. In: Volker Quaschning (Hg.): Regenerative Energiesysteme. München: Carl Hanser Verlag GmbH & Co. KG
•        Reich, Gerhard; Reppich, Marcus (2013): Regenerative Energietechnik. Wiesbaden: Springer Fachmedien Wiesbaden.


[updated 09.11.2022]
[Wed May  1 14:07:36 CEST 2024, CKEY=esumvw, BKEY=ee3, CID=EE1534, LANGUAGE=en, DATE=01.05.2024]