htw saar Piktogramm QR-encoded URL
Zurück zur Hauptseite Version des Moduls auswählen:
Lernziele hervorheben XML-Code

Ingenieurmathematik II

Modulbezeichnung:
Bezeichnung des Moduls innerhalb des Studiengangs. Sie soll eine präzise und verständliche Überschrift des Modulinhalts darstellen.
Ingenieurmathematik II
Modulbezeichnung (engl.): Engineering Mathematics II
Studiengang:
Studiengang mit Beginn der Gültigkeit der betreffenden ASPO-Anlage/Studienordnung des Studiengangs, in dem dieses Modul zum Studienprogramm gehört (=Start der ersten Erstsemester-Kohorte, die nach dieser Ordnung studiert).
Fahrzeugtechnik, Bachelor, ASPO 01.04.2016
Code: FT05
SAP-Submodul-Nr.:
Die Prüfungsverwaltung mittels SAP-SLCM vergibt für jede Prüfungsart in einem Modul eine SAP-Submodul-Nr (= P-Nummer). Gleiche Module in unterschiedlichen Studiengängen haben bei gleicher Prüfungsart die gleiche SAP-Submodul-Nr..
P242-0064, P242-0065
SWS/Lehrform:
Die Anzahl der Semesterwochenstunden (SWS) wird als Zusammensetzung von Vorlesungsstunden (V), Übungsstunden (U), Praktikumsstunden (P) oder Projektarbeitsstunden (PA) angegeben. Beispielsweise besteht eine Veranstaltung der Form 2V+2U aus 2 Vorlesungsstunden und 2 Übungsstunden pro Woche.
4V+1U (5 Semesterwochenstunden)
ECTS-Punkte:
Die Anzahl der Punkte nach ECTS (Leistungspunkte, Kreditpunkte), die dem Studierenden bei erfolgreicher Ableistung des Moduls gutgeschrieben werden. Die ECTS-Punkte entscheiden über die Gewichtung des Fachs bei der Berechnung der Durchschnittsnote im Abschlusszeugnis. Jedem ECTS-Punkt entsprechen 30 studentische Arbeitsstunden (Anwesenheit, Vor- und Nachbereitung, Prüfungsvorbereitung, ggfs. Zeit zur Bearbeitung eines Projekts), verteilt über die gesamte Zeit des Semesters (26 Wochen).
6
Studiensemester: 2
Pflichtfach: ja
Arbeitssprache:
Deutsch
Studienleistungen (lt. Studienordnung/ASPO-Anlage):
Übungen (unbenotet)
Prüfungsart:
Klausur 120 min.

[letzte Änderung 10.03.2020]
Verwendbarkeit / Zuordnung zum Curriculum:
Alle Studienprogramme, die das Modul enthalten mit Jahresangabe der entsprechenden Studienordnung / ASPO-Anlage.

FT05 (P242-0064, P242-0065) Fahrzeugtechnik, Bachelor, ASPO 01.10.2011 , 2. Semester, Pflichtfach
FT05 (P242-0064, P242-0065) Fahrzeugtechnik, Bachelor, ASPO 01.10.2015 , 2. Semester, Pflichtfach
FT05 (P242-0064, P242-0065) Fahrzeugtechnik, Bachelor, ASPO 01.04.2016 , 2. Semester, Pflichtfach
FT05 (P242-0064, P242-0065) Fahrzeugtechnik, Bachelor, ASPO 01.10.2019 , 2. Semester, Pflichtfach
MAB.2.1.MAT2 (P241-0163, P241-0164) Maschinenbau/Prozesstechnik, Bachelor, ASPO 01.10.2013 , 2. Semester, Pflichtfach
Arbeitsaufwand:
Der Arbeitsaufwand des Studierenden, der für das erfolgreiche Absolvieren eines Moduls notwendig ist, ergibt sich aus den ECTS-Punkten. Jeder ECTS-Punkt steht in der Regel für 30 Arbeitsstunden. Die Arbeitsstunden umfassen Präsenzzeit (in den Vorlesungswochen), Vor- und Nachbereitung der Vorlesung, ggfs. Abfassung einer Projektarbeit und die Vorbereitung auf die Prüfung.

Die ECTS beziehen sich auf die gesamte formale Semesterdauer (01.04.-30.09. im Sommersemester, 01.10.-31.03. im Wintersemester).
Die Präsenzzeit dieses Moduls umfasst bei 15 Semesterwochen 75 Veranstaltungsstunden (= 56.25 Zeitstunden). Der Gesamtumfang des Moduls beträgt bei 6 Creditpoints 180 Stunden (30 Std/ECTS). Daher stehen für die Vor- und Nachbereitung der Veranstaltung zusammen mit der Prüfungsvorbereitung 123.75 Stunden zur Verfügung.
Empfohlene Voraussetzungen (Module):
FT01 Ingenieurmathematik I


[letzte Änderung 14.07.2015]
Als Vorkenntnis empfohlen für Module:
FT15 Ingenieurmathematik III


[letzte Änderung 14.07.2015]
Modulverantwortung:
Prof. Dr. Marco Günther
Dozent/innen:
Dipl.-Math. Christian Leger


[letzte Änderung 14.07.2015]
Lernziele:
Die Studierenden
- können mit komplexen Funktionen rechnen
- kennen die Grundlagen der Fouriertransformation und beherrschen den Umgang mit der Laplace-Transformation
- verstehen die Bedeutung und Anwendung von Abbildungen und Koordinatensysteme
- können Determinanten, Eigenwerte und Eigenvektoren von Matrizen berechnen
- sind in der Lage, die Ableitungen und Integrale von Funktionen mit mehreren Veränderlichen zu berechnen


[letzte Änderung 12.07.2015]
Inhalt:
- Determinanten
- Komplexe Funktionen, Fourier- und Laplace-Transformation
- Abbildungen und Koordinatensysteme
- Eigenwerte und Eigenvektoren von Matrizen
- Kurven und Flächen 2.Ordnung
- Bogenlänge, Krümmung, ebene Kurven, Raumkurven
- Differential- und Integralrechnung für Funktionen mit mehreren Veränderlichen


[letzte Änderung 12.07.2015]
Weitere Lehrmethoden und Medien:
Vorlesung, Übungsaufgaben

[letzte Änderung 05.12.2010]
Literatur:
- Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 2+3
- Bartsch, Taschenbuch mathematischer Formeln
Weitere Literatur wird in der Vorlesung bekannt gegeben


[letzte Änderung 12.07.2015]
[Thu Apr 25 12:05:00 CEST 2024, CKEY=miib, BKEY=fz3, CID=FT05, LANGUAGE=de, DATE=25.04.2024]