htw saar Piktogramm
Zurück zur Hauptseite

Version des Moduls auswählen:
XML-Code

flag

Mikrokontroller-Systeme

Modulbezeichnung: Mikrokontroller-Systeme
Modulbezeichnung (engl.): Microcontroller Systems
Studiengang: Mechatronik/Sensortechnik, Bachelor, ASPO 01.10.2019
Code: MST2.MCS
SWS/Lehrform: 4SU (4 Semesterwochenstunden)
ECTS-Punkte: 5
Studiensemester: 5
Pflichtfach: ja
Arbeitssprache:
Deutsch
Prüfungsart:
Projektarbeit

[letzte Änderung 13.02.2019]
Verwendbarkeit / Zuordnung zum Curriculum:
MST2.MCS Mechatronik/Sensortechnik, Bachelor, ASPO 01.10.2019, 5. Semester, Pflichtfach
MST2.MCS Mechatronik/Sensortechnik, Bachelor, ASPO 01.10.2020, 5. Semester, Pflichtfach
Arbeitsaufwand:
Die Präsenzzeit dieses Moduls umfasst bei 15 Semesterwochen 60 Veranstaltungsstunden (= 45 Zeitstunden). Der Gesamtumfang des Moduls beträgt bei 5 Creditpoints 150 Stunden (30 Std/ECTS). Daher stehen für die Vor- und Nachbereitung der Veranstaltung zusammen mit der Prüfungsvorbereitung 105 Stunden zur Verfügung.
Empfohlene Voraussetzungen (Module):
MST2.MIC Mikroprozessortechnik


[letzte Änderung 28.03.2019]
Als Vorkenntnis empfohlen für Module:
MST2.SMS Steuerung Mechatronischer Systeme


[letzte Änderung 05.05.2020]
Modulverantwortung:
Prof. Dr.-Ing. Jürgen Schäfer
Dozent:
Prof. Dr.-Ing. Jürgen Schäfer


[letzte Änderung 28.03.2019]
Lernziele:
Die  Studierenden  sind nach erfolgreichem Abschluss des Moduls un der Lage, anhand einer modernen 32-Bit-RISC-Architektur den Aufbau und die Arbeitsweise eines Mikrocontrollers inklusive der zugehörigen Peripherie (USART, SPI, I2C, RTC, GPIO, Timer) zu erklären. Sie kennen Methoden zur Abstraktion der verwendeten Hardware, sie erkennen mögliche Probleme bzgl. Test und Wartung der Software bereits in der Design-Phase und können unterschiedliche Implementierungsvarianten qualitativ beurteilen.

[letzte Änderung 28.03.2019]
Inhalt:
1. Werkzeuge der Softwareerstellung
- Entwicklungsumgebung µVison ARM-IDE
- Wichtige Unterstützungsprogramme
-- TortoiseSVN
-- Doxygen
2. Wichtige Entwurfsmuster
3. Nebenläufigkeit
- Problematik
- Lösungsmöglichkeiten
-- Compare and Swap
-- Load link/Store conditional
4. Abstraktion der Hardware (HAL)
5. Anwendungen aus der Praxis (exemplarisch)
- Abstrakte Implementierung einer Kommunikationsschnittstelle am Beispiel eines Interfaces zum Empfang und Senden
-- einzelner Datenbytes einer (seriellen) Schnittstelle und
-- von Datenpaketen
- Verwendung von Rückruf-Methoden in Verbindung mit Interrupts (Inversion of Control)
- Realisierung eines Consumer-producer-Modells zur Datenverarbeitung in mechatronischen Systemen

[letzte Änderung 28.03.2019]
Literatur:
Jospeh Yiu: "The Definite Guide to the ARM Cortex-M3", Newnes
Bruce P. Douglass: "Design Patterns for Embeddd Systems in C", Newnes
Daniel W. Lewis: "Fundamentals of Embedded Software with the ARM Cortex-M3", Pearson International Ed.
Thomas Eißenlöffel: "Embedded-Software entwickeln", dpunkt.verlag
J. A. Langbridge: Professional Embedded ARM Development, John Wiley & Sons, 2014
ST: "RM0008 Reference Manual", www.st.com
ARM: "ARM Compiler toolchain, Compiler Reference", http://infocenter.arm.com/help
ARM: "ARM Compiler toolchain, Usiong the Compiler", http://infocenter.arm.com/help

[letzte Änderung 28.03.2019]
[Wed Oct 27 15:58:43 CEST 2021, CKEY=m3MST2.MCS, BKEY=mst3, CID=MST2.MCS, LANGUAGE=de, DATE=27.10.2021]