| 
 | 
 | 
| Module code:  PIB125 | 
 | 
| 
4V+2U (6 hours per week) | 
| 
7 | 
| Semester: 1 | 
| Mandatory course: yes | 
Language of instruction:  
German | 
Assessment:  
Written examination
  
[updated 08.05.2008] 
 | 
 
PIB125 (P221-0001) Applied Informatics, Bachelor, ASPO 01.10.2011
, semester 1, mandatory course 
 | 
90 class hours (= 67.5 clock hours) over a 15-week period. The total student study time is 210 hours (equivalent to 7 ECTS credits). There are therefore 142.5 hours available for class preparation and follow-up work and exam preparation.
  | 
Recommended prerequisites (modules):  
None. 
 | 
Recommended as prerequisite for:  
PIB215 Mathematics 2 PIB220 Graph Theory PIB330 Databases PIBWI19 Machine Learning PIBWI83 Computer Vision PIBWI92 Numerical Software
 
  
[updated 02.03.2017] 
 | 
Module coordinator:  
Prof. Dr. Rainer Lenz | 
Lecturer:   Prof. Dr. Rainer Lenz Dipl.-Ing. Dirk Ammon (exercise) Dipl.-Math. Wolfgang Braun (exercise)
 
  
[updated 01.06.2011] 
 | 
Learning outcomes:  
Students will be taught basic skills in general mathematics, they will acquire a basic understanding of algebra and analysis and will become familiar with mathematical terminology.
  
[updated 08.05.2008] 
 | 
Module content:  
1        Basic mathematical terminology Predicate logic, sets, relations, maps   2        Natural numbers, mathematical induction, recursion 2.1        The axioms of the natural numbers 2.2        Mathematical induction 2.3        Recursive definitions 2.4        Binomial coefficients and binomial formulae 2.5        Basic terminology of combinatorics   3        Elementary vector calculus in Euclidian vector space 3.1        Vector algebra, linear independence, dimension 3.2        Vectors in the Cartesian coordinate system, scalar product, vector product, mixed product 3.3        Geometrical applications   4        Vectors in n-dimensional space 4.1        Generating system, basis, subspaces 4.2        Linear maps, range, kernel 4.3        Matrix representation of linear maps 4.4        Geometrical applications: Projections, reflections, rotations   5        Matrices 5.1        Linear systems of equations, Gaussian algorithm 5.2        Matrix algebra 5.3        Quadratic matrices, determining the inverse matrix, determinants, Cramer’s rule, adjoint eigenvalue problems, basis transformation    6        Basic terminology of algebra 6.1        Semigroups, monoids 6.2        Groups, subgroups, normal subgroup, factor groups, homomorphism 6.3        Rings and fields   7        Sequences and series 7.1        Limits, limit theorems, Cauchy sequences 7.2        Series, conditional and absolute convergence, comparison test and ratio test, Cauchy product 7.3        Geometrical series, exponential series   8        Continuity 8.1        Limits of functions 8.2        Properties of continuous functionsInverse functions, logarithms, inverse hyperbolic and inverse trigonometric functions
 
  
[updated 08.05.2008] 
 | 
Recommended or required reading:  
Hartmann, P.:  Mathematik für Informatiker, Vieweg, 3. Aufl. 2004 Meyberg, K. Vachenauer, P.:  Höhere Mathematik 1, Springer
 
  
[updated 08.05.2008] 
 | 
Module offered in:  
WS 2016/17, 
WS 2015/16, 
WS 2014/15, 
WS 2013/14, 
WS 2012/13, 
...
 |