|
|
Module code: WIBASc-525-625-Ing21 |
2V+2U (4 hours per week) |
5 |
Semester: 5 |
Mandatory course: no |
Language of instruction:
English |
Assessment:
Written exam
[updated 14.03.2018]
|
WIBASc-525-625-Ing21 Industrial Engineering, Bachelor, ASPO 01.10.2013
, semester 5, optional course, general subject
WIB21-WPM-T-101 (P450-0039) Industrial Engineering, Bachelor, ASPO 01.10.2021
, semester 5, optional course, general subject
Suitable for exchange students (learning agreement)
|
60 class hours (= 45 clock hours) over a 15-week period. The total student study time is 150 hours (equivalent to 5 ECTS credits). There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
|
Recommended prerequisites (modules):
WIBASc145 Physics WIBASc165 Mathematics I WIBASc365 English I
[updated 04.12.2020]
|
Recommended as prerequisite for:
|
Module coordinator:
Prof. Dr. Frank Ulrich Rückert |
Lecturer: Prof. Dr. Frank Ulrich Rückert
[updated 20.01.2020]
|
Learning outcomes:
Topics: After successfully completing this module, students will know the basics of classical fluid dynamics theory. - Students will be able to plan an innovative aircraft geometry in teams - The fluid flow simulation of the prototype will be done using the ANSYS Workbench (CFX) - Students will be able to identify problems in this area and formulate tasks independently - Students will have had their first introductory training in working with the 3D computational fluid dynamics program ANSYS Workbench (CFX) The main goal of this module is to teach students to classify the costs and benefits of a commercial flow simulation and to successfully assign and delegate tasks.
[updated 13.09.2018]
|
Module content:
Group work in project teams: - Definition of the project structure and roles - Planning tasks The classical flow theory: - Presentation of different wing profiles (NACA) - Profile flow - Euler and Bernoulli equation - Mass maintenance - Impulse maintenance; Navier-Stokes equations - Two equations turbulence models - Loss calculation, flow breakage Basics of the ANSYS Workbench (CFX): - Creation of a parameterized flow geometry - Discretization of the geometry with grating grids - Numerical solution of partial differential equations - Visualization and interpretation of 3D flow results - Documentation of the simulation results (Excel, Powerpoint) Practical work: - Generation of a prototype with a 3-D printer - Preparation of an experimental plan (DOE) - Conducting pilot tests in the wind tunnel - Documentation of test results (Excel, Powerpoint) Presentation and discussion of the results in a lecture with the group
[updated 14.03.2018]
|
Teaching methods/Media:
- Lecture with beamer - Implementation of practical flow simulations with the ANSYS Workbench (CFX) - Supervised computer exercises in the PC pool - Presentation of solutions for the other participants - Creation of a PowerPoint presentations and youtube video dipicting the results obtained
[updated 14.03.2018]
|
Recommended or required reading:
- Cengel, Yunus A.; Cimbala, John M.: "Fluid Mechanics Fundamentals and Applications"; Mc Graw Hill; Higher Education; 2010 - Peric, M., Ferziger, J. H.: "Computational Methods for Fluid Dynamics"; Springer-Verlag; 2004 - Rückert, Frank U.: "A short introduction to CFD" (english language); htw saar; 2017 - Chant, Christopher: "Flugzeug-Prototypen. Vom Senkrechtstarter zum Stealth-Bomber"; Stuttgart, Motorbuch, 1992 - Strybny, Jan: "Ohne Panik - Strömungsmechanik Lernbuch zur Prüfungsvorbereitung"; vieweg Verlag, 2003 - Siekmann, Helmut: "Strömungslehre - Grundlagen"; Springer Verlag, 2000 - Kalide, Wolfgang; "Einführung in die Technische Strömungslehre"; Hanser Verlag, 1984 - Bohl, Willi: "Technische Strömungslehre"; Vogel Buchverlag, 2002 - Noll, Berthold: "Numerische Strömungsmechanik - Grundlagen"; Springer-Verlag, 1993 - Spurk, Joseph H.: "Strömungslehre - Einführung in die Theorie und Praxis"; Springer-Verlag, 1992 - Sigloch, Herbert: "Technische Fluidmechanik"; Springer-Verlag, 2007
[updated 14.03.2018]
|