|
|
Module code: WIBASc255 |
|
2V+2U (4 hours per week) |
5 |
Semester: 2 |
Mandatory course: yes |
Language of instruction:
German |
Assessment:
Written or oral examination. The type of examination will be announced on the notice board at the beginning of the course.
[updated 02.07.2019]
|
WIBASc255 (P450-0088) Industrial Engineering, Bachelor, ASPO 01.10.2013
, semester 2, mandatory course
|
60 class hours (= 45 clock hours) over a 15-week period. The total student study time is 150 hours (equivalent to 5 ECTS credits). There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
|
Recommended prerequisites (modules):
WIBASc165 Mathematics I
[updated 10.02.2020]
|
Recommended as prerequisite for:
WIBASc-515 Automation Engineering WIBASc-525-625-FÜ12 Using Mathematical Software WIBASc-525-625-FÜ15 Market Research WIBASc-525-625-FÜ19 Simulation II WIBASc-525-625-FÜ22 Decision theory WIBASc-525-625-FÜ23 Simulation WIBASc-525-625-FÜ29 Introduction to Six Sigma
[updated 11.02.2020]
|
Module coordinator:
Prof. Dr. Susan Pulham |
Lecturer: Prof. Dr. Susan Pulham
[updated 10.02.2020]
|
Learning outcomes:
After successfully completing this module students will: _ be able to process mass data with methods of descriptive statistics _ know how to interpret the results of the above _ be able to recognize stochastic situations as such and can model them by stochastic means _ have acquired the ability to calculate probabilities, determine suitable distribution forms and calculate distribution parameters _ have a basic understanding of inductive statistics, especially methods of estimating parameters and testing hypotheses
[updated 02.07.2019]
|
Module content:
1. Descriptive statistics: _ Basic terms _ One- and two-dimensional frequency distributions _ Measures of location and measures of spread/dispersion _ Calculating correlation and regression 2. Probability calculus _ Basic terms: random experiment, events, probability _ Modeling _ Multi-stage random experiments _ Conditional probability and independence _ Random variables, expected value, variance, normal distribution and limit theorems 3. Basic elements of the inferential statistics _ Problems of inferential statistics _ Point and interval estimates _ Hypothesis tests
[updated 02.07.2019]
|
Teaching methods/Media:
Excel files with sample material, press reports and statistical studies will be used. Regularly revised lecture notes will be available for this course.
[updated 02.07.2019]
|
Recommended or required reading:
_ Dietmaier, C.: Mathematik für Wirtschaftsingenieure, 1. Auflage, Carl Hanser Verlag, 2005 _ Eckstein, Peter: Statistik für Wirtschaftswissenschaftler, 3. Auflage, Gabler, Wiesbaden, 2011 _ Fischer, Gerd: Stochastik einmal anders; 1. Auflage, Vieweg+Teubner Verlag, Wiesbaden, 2005. _ Henze, Norbert: Stochastik für Einsteiger; 9. Auflage, Vieweg Verlag, Wiesbaden, 2011. _ Pulham, Susan: Statistik für Nicht-Mathematiker, Gabler, Wiesbaden, 2011 _ Sachs, Michael: Wahrscheinlichkeitsrechnung und Statistik für Ingenieurstudenten an Fachhochschulen; 3. Auflage, Carl Hanser Verlag, 2009
[updated 02.07.2019]
|