|
|
Module code: E804 |
3V+1U (4 hours per week) |
6 |
Semester: 8 |
Mandatory course: yes |
Language of instruction:
German |
Assessment:
Oral examination
[updated 12.03.2010]
|
E804 Electrical Engineering, Master, ASPO 01.10.2005
, semester 8, mandatory course
|
60 class hours (= 45 clock hours) over a 15-week period. The total student study time is 180 hours (equivalent to 6 ECTS credits). There are therefore 135 hours available for class preparation and follow-up work and exam preparation.
|
Recommended prerequisites (modules):
None.
|
Recommended as prerequisite for:
E908 Dynamics of Electrical Machines E925 Applications of Motors E926 CAE Methods in Electrical Machine Construction E928 Special Machines
[updated 13.03.2010]
|
Module coordinator:
Prof. Dr.-Ing. Dietmar Brück |
Lecturer: Prof. Dr.-Ing. Dietmar Brück
[updated 12.03.2010]
|
Learning outcomes:
After completing this course, students will be able to apply the approaches and methods learned to explain phenomena in electrical engineering theory, as well as deriving solutions and developing measurement operations and interpreting their results. Students will be in a position to use the general framework of Maxwell’s theory to derive solutions to specific problems and to assess their validity and applicability.
[updated 12.03.2010]
|
Module content:
1.Maxwell’s equations 2.Material relations, boundary and transmission conditions, radiative conditions 3.Dispersive and non-dispersive media 4.Decoupling, Lorentz decoupling, Hertz and Fitzgerald vectors, scalar potential and vector potential, Bromwich scalar potentials 5.Plane waves 6.Fresnel diffraction 7.Transmission line theory for coaxial, TP cable and optical waveguides 8.Current displacement
[updated 12.03.2010]
|
Teaching methods/Media:
Lecture notes, overhead transparencies, video projector, PC, CD
[updated 12.03.2010]
|
Recommended or required reading:
Baumeister, J.: Stable Solution of Inverse Problems, Friedr. Vieweg u. Sohn, Braunschweig 1987 Becker, K.-D.: Ausbreitung elektromagnetischer Wellen, Springer-Verlag Berlin, Heidel-berg, New York 1974 Becker, K.-D.: Theoretische Elektrotechnik, VDE-Verlag Berlin 1982 Bergmann. L. und Schäfer,C.: Lehrbuch der Experimentalphysik Bd. III Teil 1: Wellenoptik, Walter de Gruyter, Berlin 1962 Blume, S.: Nichtrotationssymmetrische Wellenfelder, Kleinheubacher Berichte 24, 1981, 1-16 Blume, S.: Theorie elektromagnetischer Felder, Dr. Alfred Hüthig Verlag Heidelberg 1982 Bromwich, T. S.: Electromagnetic waves, Phil. Mag. 38 [1919], 143-164 Buchholz, H.: Elektrische und magnetische Potentialfelder, Springer-Verlag Berlin 1957 Clemmow, P. C.: The Plane Wave Spectrum Representation of Electromagnetic Fields, Pergamon Press Oxford 1966 Collin, R. E.: Field theory of guided waves, Mc Graw-Hill Book Company New York 1960 Courant, R. und Hilbert, D. Methoden der mathematischen Physik, Springer-Verlag Berlin 1968 Goodman, J. W. Introduction to Fourier Optics, Mc Graw-Hill Book Company New York 1968 Hafner, C.: Numerische Berechnung elektromagnetischer Felder, Springer-Verlag Berlin 1987 Harrington. R. F.: Time-harmonic electromagnetic fields, Mc Graw-Hill Book Company New York 1961 Hofmann, H.: Das elektromagnetische Feld, Springer-Verlag Wien 1974 Jones, D. S.: The theory of electromagnetism, Pergamon Press London 1964 Magid, A. W. Electromagnetic fields, energy and waves, John Wiley and Sons, Inc., New York Maue, A.W.: Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung, Z. Phys. 126 [1949], 601-618 Simonyi, K.: Theoretische Elektrotechnik, VEB Deutscher Verlag der Wissenschaften Berlin 1977 Unger, H.-G.: Elektromagnetische Wellen I, Friedr. Vieweg u. Sohn Braunschweig 1967
[updated 12.03.2010]
|