htw saar QR-encoded URL
Zurück zur Hauptseite Version des Moduls auswählen:
Lernziele hervorheben XML-Code


[Lernergebnisse des Moduls anzeigen]

Mathematik 1

Modulbezeichnung:
Bezeichnung des Moduls innerhalb des Studiengangs. Sie soll eine präzise und verständliche Überschrift des Modulinhalts darstellen.
Mathematik 1
Studiengang:
Studiengang mit Beginn der Gültigkeit der betreffenden ASPO-Anlage/Studienordnung des Studiengangs, in dem dieses Modul zum Studienprogramm gehört (=Start der ersten Erstsemester-Kohorte, die nach dieser Ordnung studiert).
Wirtschaftsingenieurwesen, Bachelor, ASPO 01.10.2021
Code: WIB21-140
SAP-Submodul-Nr.:
Die Prüfungsverwaltung mittels SAP-SLCM vergibt für jede Prüfungsart in einem Modul eine SAP-Submodul-Nr (= P-Nummer). Gleiche Module in unterschiedlichen Studiengängen haben bei gleicher Prüfungsart die gleiche SAP-Submodul-Nr..
P450-0291
SWS/Lehrform:
Die Anzahl der Semesterwochenstunden (SWS) wird als Zusammensetzung von Vorlesungsstunden (V), Übungsstunden (U), Praktikumsstunden (P) oder Projektarbeitsstunden (PA) angegeben. Beispielsweise besteht eine Veranstaltung der Form 2V+2U aus 2 Vorlesungsstunden und 2 Übungsstunden pro Woche.
4V+2U (6 Semesterwochenstunden)
ECTS-Punkte:
Die Anzahl der Punkte nach ECTS (Leistungspunkte, Kreditpunkte), die dem Studierenden bei erfolgreicher Ableistung des Moduls gutgeschrieben werden. Die ECTS-Punkte entscheiden über die Gewichtung des Fachs bei der Berechnung der Durchschnittsnote im Abschlusszeugnis. Jedem ECTS-Punkt entsprechen 30 studentische Arbeitsstunden (Anwesenheit, Vor- und Nachbereitung, Prüfungsvorbereitung, ggfs. Zeit zur Bearbeitung eines Projekts), verteilt über die gesamte Zeit des Semesters (26 Wochen).
5
Studiensemester: 1
Pflichtfach: ja
Arbeitssprache:
Deutsch
Prüfungsart:
Klausur

[letzte Änderung 07.05.2021]
Prüfungswiederholung:
Informationen bzgl. der Prüfungswiederholung (jährlich oder semesterweise) finden Sie verbindlich in der jeweiligen ASPO Anlage.
Verwendbarkeit / Zuordnung zum Curriculum:
Alle Studienprogramme, die das Modul enthalten mit Jahresangabe der entsprechenden Studienordnung / ASPO-Anlage.

WIB21-140 (P450-0291) Wirtschaftsingenieurwesen, Bachelor, ASPO 01.10.2021 , 1. Semester, Pflichtfach
Arbeitsaufwand:
Der Arbeitsaufwand des Studierenden, der für das erfolgreiche Absolvieren eines Moduls notwendig ist, ergibt sich aus den ECTS-Punkten. Jeder ECTS-Punkt steht in der Regel für 30 Arbeitsstunden. Die Arbeitsstunden umfassen Präsenzzeit (in den Vorlesungswochen), Vor- und Nachbereitung der Vorlesung, ggfs. Abfassung einer Projektarbeit und die Vorbereitung auf die Prüfung.

Die ECTS beziehen sich auf die gesamte formale Semesterdauer (01.04.-30.09. im Sommersemester, 01.10.-31.03. im Wintersemester).
Die Präsenzzeit dieses Moduls umfasst bei 15 Semesterwochen 90 Veranstaltungsstunden (= 67.5 Zeitstunden). Der Gesamtumfang des Moduls beträgt bei 5 Creditpoints 150 Stunden (30 Std/ECTS). Daher stehen für die Vor- und Nachbereitung der Veranstaltung zusammen mit der Prüfungsvorbereitung 82.5 Stunden zur Verfügung.
Empfohlene Voraussetzungen (Module):
Keine.
Als Vorkenntnis empfohlen für Module:
WIB21-230 Statistik und Datenanalyse
WIB21-240 Mathematik 2
WIB21-260 Elektrotechnik
WIB21-460 Konstruktionslehre


[letzte Änderung 29.10.2021]
Modulverantwortung:
Prof. Dr. Frank Kneip
Dozent/innen: Prof. Dr. Frank Kneip

[letzte Änderung 01.04.2021]
Lernziele:
Studierende, die dieses Modul erfolgreich abgeschlossen haben, können:
•       geeignete Aussagen mittels vollständiger Induktion beweisen
•       die Eigenschaften von Zahlenfolgen sowie ausgewählter Funktionstypen analysieren und benennen
•       die elementaren Techniken der Differential- und Integralrechnung anwenden
•       Funktionen durch Taylorpolynome approximieren und die Qualität der Approximation beurteilen
•       physikalisch-technische sowie betriebswirtschaftliche Fragestellungen mathematisch modellieren und lösen, sowie das Resultat interpretieren

[letzte Änderung 29.10.2021]
Inhalt:
1.      Vollständige Induktion
2.      Zahlenfolgen und Grenzwerte
3.      Grundlagen über Funktionen (z.B. Monotonie, Stetigkeit, Beschränktheit, Grenzwerte)
4.      Einführung in die Differentialrechnung
        4.1     Differenzierbarkeit
        4.2     Technik des Differenzierens
  
5.      Anwendungen der Differentialrechnung
        5.1     Modellbildung an Beispielen
        5.2     Differentialrechnung in der Ökonomie
        5.3     Physikalisch-technische Anwendungen
        5.4     Extremwertaufgaben
  
6.      Einführung in die Integralrechnung
        6.1     Flächenberechnung und bestimmtes Integral
        6.2     Hauptsatz der Differential- und Integralrechnung
        6.3     Unbestimmte Integrale
        6.3     Uneigentliche Integrale
        6.4     Integrationstechniken
        6.5     Rotationskörper
  
7.      Anwendung der Integralrechnung
8.      Taylorreihen, Unendliche Reihen
9.      Komplexe Zahlen

[letzte Änderung 29.10.2021]
Weitere Lehrmethoden und Medien:
Vorlesung, Übungen und Lern-Team-Coaching


[letzte Änderung 29.10.2021]
Literatur:
•       Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Band 1, 13. Auflage, Vieweg + Teubner Verlag, 2011
•       Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler – Anwendungsbeispiele; 6. Auflage, Vieweg + Teubner Verlag, 2012
•       Meyberg, K./Vachenauer, P.: Höhere Mathematik 1; 6. Auflage, Springer Verlag, 2001
•       Neunzert, H./Eschmann, W.G. u.a.: Analysis 1; 3. Auflage, Springer Verlag, 1996
•       Leupold, W. u.a.: Mathematik – Ein Studienbuch für Ingenieure, Band 1; 2. Auflage, Hanser Fachbuchverlag, 2003
•       Preuß W./Wenisch, G.: Lehr- und Übungsbuch Mathematik, Band 1; 3. Auflage, Hanser Fachbuchverlag, 2003
•       Preuß W./Wenisch, G.: Lehr- und Übungsbuch Mathematik, Band 2; 3. Auflage, Hanser Fachbuchverlag, 2003
•       Bartsch, Hans-Jochen: Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler; 22. Auflage, Carl Hanser Verlag, 2011
•       Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler; 10. Auflage, Vieweg + Teubner Verlag, 2009
•       Teubner-Taschenbuch der Mathematik Bd.1; 2. Auflage, Vieweg + Teubner Verlag, 2003

[letzte Änderung 29.10.2021]
[Thu Nov 21 10:01:40 CET 2024, CKEY=wm1, BKEY=wi3, CID=WIB21-140, LANGUAGE=de, DATE=21.11.2024]