|
|
Module code: DFMME-110 |
|
5V+3U (8 hours per week) |
8 |
Semester: 1 |
Mandatory course: yes |
Language of instruction:
German |
Assessment:
Written exam 120 min.
[updated 04.11.2020]
|
DFMME-110 (P610-0443) Mechanical Engineering, Master, ASPO 01.10.2024
, semester 1, mandatory course
MAM_19_A_1.01.MTS (P241-0088) Engineering and Management, Master, ASPO 01.10.2019
, semester 1, mandatory course
MAM_24_A_1.01.MTS Engineering and Management, Master, SO 01.10.2024
, semester 1, mandatory course
|
120 class hours (= 90 clock hours) over a 15-week period. The total student study time is 240 hours (equivalent to 8 ECTS credits). There are therefore 150 hours available for class preparation and follow-up work and exam preparation.
|
Recommended prerequisites (modules):
None.
|
Recommended as prerequisite for:
|
Module coordinator:
Prof. Dr. Marco Günther |
Lecturer: Prof. Dr. Marco Günther
[updated 08.07.2019]
|
Learning outcomes:
Statistics: After successfully completing this module, students will be able to solve statistical problems in the field of engineering sciences independently. They will be able to prepare and analyse complex data sets and interpret the results. Using suitable estimation methods, they will be able to draw conclusions about the population from a sample and critically scrutinize available statistics or the results of their evaluation. Simulation Theory In the context of engineering problems, students will be familiar with the basics of mathematical modeling and numerical methods. They will be familiar with the basic properties of partial differential equations, simple solution methods and know about the possibilities and limitations of numerical methods using the finite difference method.
[updated 04.11.2020]
|
Module content:
Statistics: - Descriptive statistics: central tendencies and dispersion, correlation, regression - Probability calculation: random variables und distributions, limit theorems - Inferential statistics: point estimate, interval estimate, testing hypotheses - Introduction to a statistics program package Simulation Theory: - Fundamentals of vector analysis (repetition) - Fundamentals of partial differential equations (e.g. classification) - Basic concepts of numerics like stability, convergence, error - Solution methods: separable partial differential equation, Finite Differences Method (FDM) - Applying the FDM to boundary value problems and initial boundary value problems - Using Comsol Multiphysics as a solution tool
[updated 04.11.2020]
|
Teaching methods/Media:
Statistics: Lecture: 3 hours per semester week, tutorials: 2 hours per semester week, Use of the web-based learning software ActiveMath: http://markov.htw-saarland.de:8080/ActiveMath2/main/menu.cmd, Simulation Theory: Lecture: 2 hours per semester week, Tutorials: 1 hour per semester week, Blackboard, slides, handouts, tutorials
[updated 04.11.2020]
|
Recommended or required reading:
Statistics: Weber H.: Einführung in die Wahrscheinlichkeit und Statistik für Ingenieure Hartung J., Elpelt B.: Multivariate Statistik Walz G., Grabowski B.: Lexikon der Stochastik mit Beispielen Lecture notes _Deskriptive Statistik_, und Formelsammlung 1 Lecture notes _Wahrscheinlichkeitsrechnung_ und Formelsammlung 2 Simulation Theory: Angermann A., Beuschel M, Rau M., Wohlfarth U.: MATLAB _ Simulink _ Stateflow Knabner P., Angermann L.: Numerik partieller Differentialgleichungen
[updated 04.11.2020]
|